Jinrui Huang
Chinese Academy of Forestry, China
Title: Fabrication of Multifunctional Biopolymer Composites with High Performance by Controlling the Dispersion and Distribution of Graphene in the Composites
Biography
Biography: Jinrui Huang
Abstract
Graphene (GE) has received great attention owing to its extremely high surface area and exceptional mechanical, electrical, and thermal properties. Recently, graphene has been added into a host of biopolymers to produce multinational composite materials. It is known that the properties of the composite not only depends on the properties of the fillers, but also depends on the distribution and dispersion of the fillers in the polymer matrix. In this study, thermally conductive biopolymer composite with high thermal conductivity at low GE loading is fabricated by trapping GE at the interface of a poly(ε-caprolactone)/poly(lactic acid) blend with co-continuous structure via utilizing adsorption-desorption of polymer chains on the GE surface. On the other hand, the dispersion of graphene in the polymer matrix also determines the performance of graphene/polymer composite. In this study, the strong p–p interactions between graphene oxide and dehydroabietic acid, which is the purified product of the renewable resource disproportionated rosin, is utilized to in-situ synthesize graphene/rosin-based polyamine. It is found that graphene can be uniformly dispersed in the epoxy matrix after curing epoxy resin with the in-situ synthesized graphene/rosin-based polyamine.