Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Dean Webster

Dean Webster

North Dakota State University, USA

Title: High Performance, high bio-content thermosets for composites and coatings

Biography

Biography: Dean Webster

Abstract

While vegetable oils and other bio-based raw materials have been used in coatings resins for decades, new concepts are needed to transform bio-based raw materials into coatings resins that meet today's demanding performance needs. Highly crosslinked petrochem.-based thermosets are used in broad applications due to their high performance properties. Designing bio-based resins having a high no. of appropriately distributed functional groups per mol. can lead to thermosets having exceptional performance properties. Sucrose ester resins from vegetable oils, such as soybean oil, having a high degree of substitution can be epoxidized to yield biobased epoxy resins (e.g. Epoxidized sucrose soyate, ESS) having a high degree of functionality. These epoxy resins can then be crosslinked using several different mechanisms such as via anhydride-epoxy reactions, catalytic polymerization, and so on to yield coatings having high crosslink d., good hardness, excellent solvent resistance and adhesion. In addition, polyols can be derived from the epoxidized sucrose soyate resins via reaction with alcohols such as methanol to yield methoxy sucrose soyate polyol (MSSP). These highly functional polyols can be crosslinked using melamine-formaldehyde resins or polyisocyanates to yield thermoset coatings having performance properties comparable to their petrochemical counterparts and exceeding the performance of traditional vegetable oil based polyols.