Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Nathanaël Guigo

Nathanaël Guigo

University Nice Sophia Antipolis, France

Title: The poly(ethylene 2,5-furandicarboxylate): A new emerging biobased polyester from sugar stream

Biography

Biography: Nathanaël Guigo

Abstract

Poly(ethylene 2,5-furandicarboxylate) (PEF) is nowadays considered as a promising sustainable successor of poly(ethylene terephthalate) (PET) for several reasons. First, PEF is fully biobased since it comes from the polycondensation of bio-based ethylene glycol and 2,5-furandicarboxylic acid (FDCA) which is the chemical analogue of the terephthalic acid. FDCA is currently produced by Synvina at pilot plant scale from a C6 sugars conversion process of vegetable biomass. Synvina - the joint venture between Avantium and BASF - aims at building a world-leading reference plant with an annual production capacity of up to 50,000 metric tons of FDCA per year.

PEF possesses superior barrier properties and more attractive thermal properties (e.g., higher glass transition temperature and lower melting point) than PET. The low CO2, O2 and H2O permeability of PEF is a tremendous advantage for packaging applications. In order to fill the requirements of industrial applications a deep knowledge of polymer structure-property relations is needed. An important aspect for both the production and application of aromatic polyesters such as PEF is their crystallization behavior. Semi-crystalline pellets/chips are used in the solid state polymerization reactor to avoid agglomeration or sticking during the process, which are initially prepared by quiescent crystallization of medium molecular weight polyester. PEF crystals either formed from the glass or from the melt show similar structures but the dynamic of crystal growth differs between the two crystallization pathways. Moreover, annealing at temperatures close to the PEF melting point allowed obtaining information on PEF self-nucleation behavior. Finally, the restriction of the amorphous phase mobility by the presence of crystals is more limited in comparison with PET.

Figure 1: Sketch representing the coupling between the amorphous phase (red for PET and green for PEF) and the crystalline phase.