Scientific Program

Conference Series Ltd invites all the participants across the globe to attend 8th International Conference and Exhibiton on Biopolymers and Bioplastics Las Vegas, Nevada, USA.

Day 1 :

Keynote Forum

Saul Sanchez Valdes

Applied Chemistry Research Center (CIQA), México

Keynote: Influence of keratin and DNA coating on flammability characteristics of PE/EVA blends

Time : 09:20-10:00

Conference Series Biopolymers and Bioplastics 2018 International Conference Keynote Speaker Saul Sanchez Valdes photo
Biography:

Saul Sanchez has his expertise in preparation and characterization of polymer nanomaterials. He is a senior researcher at Applied Chemistry Research Center (CIQA) for more than 29 years. He received his PhD in Materials Engineering from the UANL in Mexico. He has published more than 70 technical papers, 6 patents and 3 books related to polymer material science, and has supervised more than 20 MSc and PhD thesis. His research work at CIQA has been related most with: polymer processing, polymer nanocomposite materials, polymer functionalization, and characterization.

Abstract:

The combination of keratin fibers, obtained from feathers, with deoxyribose nucleic acid (DNA) is employed in low-density polyethylene-ethylene vinyl acetate (LDPE/EVA) blends using DNA coating with a segregated structure in order to enhance the blend flame retardant properties. The combined effect of each filler and the using of PEgMA as compatibilizer on PE/EVA flame retardant properties were analyzed. DNA by its chemical structure can be considered as an intumescent or blowing agent and when it is combined with keratin the char formation is promoted and the flame retardant properties are enhanced. Instead of melt compounding in the polymer bulk, DNA was distributed along specific layers forming a segregated network which resulted in better PE/EVA blend flame retardant properties. Limiting oxygen index (LOI), cone calorimeter determinations and flammability test (Underwriters Laboratory –UL-94) were used to evaluate the flame retardant properties. The composite morphology was determined by scanning electron microscopy (SEM). The mechanical properties were also evaluated by Dynamic-mechanical analysis (DMA). This filler combination significantly reduces the burning rate during horizontal flammability tests, increases the limit oxygen index and reduces the heat release rate during cone calorimetry tests. The flame retardant behavior was compared with a reference PE/EVA sample with 55 wt% of Magnesium Hydroxide currently used for wire coatings in the wire and cable industry. The results indicated that the combination of both types of fillers makes it possible to reduce the total Magnesium hydroxide filler content from 55 to 20% to achieve good flame retardant properties.

 

Keynote Forum

Bernabé L Rivas

University of Concepcion, Chile

Keynote: Polymers and nanocomposites to remove inorganic contaminants in water

Time : 10:00-10:40

Conference Series Biopolymers and Bioplastics 2018 International Conference Keynote Speaker Bernabé L Rivas photo
Biography:

Bernabé L Rivas has completed his PhD at the University of Concepcion (1980) and postdoctoral studies from Tuebingen University, Germany with Humboldt Foundation Fellows (1989-1991). He is the Vice Rector of the University of Concepción. The leader of the research group about Synthesis and Applications of -Functional Polymers, Polyelectrolytes, Resins with Retention Properties for Pollutants Ions.–Polychelatogens in combination with ultrafiltration membranes. Polymer-metal complexes as biocides. Nanocomposites from polypropylene and biopolymers. He has published more than 400 papers in reputed journals, 29 chapter of books, h factor 34, and has been serving as an editorial board member of journals.

Abstract:

Membrane filtration easily allows this separation by means of the method known as the liquid-phase polymer-based retention (LPR) technique. Applications of water-soluble polymers to the homogeneous enrichment or selective separation of various metal ions from dilute solutions have been reported. Through to washing or enrichment methods, Cr(VI), V(V), Mo(VI), B(V), and As(V) removal experiments were carried out at different pH using water-soluble cationic polymers (WSCPs) containing quaternary ammonium salts. The results showed the highest retention capacity of oxyanions depending on the pH. Polymer-clay nanocomposites researchers have presented a great attention from the scientific community because nanocomposites materials present enhanced properties (mechanical, thermal, and barrier properties) compared with starting material (unloaded polymers). The use of polymer matrix with organic functional with the capability to retain ion and filler such as clays lead to nanocomposite ion exchange resins. We have studied polymer nanocomposite loaded with layered double hydroxide (LDH) as sorbents for oxyanions such as arsenate, chromate, and vanadate. Under different experimental conditions, the composite exhibited a high sorption reaching almost a 100% of removal. Also, the sorption of oxyanions presented a fast kinetics. Selectivity experiments showed that there is not a significant decrease in sorption capacity.

Break: Networking & Refreshment Break 10:40-11:00 @ Foyer
ECHO Exhibitor Session by Tine Zlebnik 11:00-11:40
Panel Discussion 11:40-11:50

Keynote Forum

Tine Zlebnik

ECHO, Finland

Keynote: Special Session by ECHO Exhibitor

Time : 11:00-11:40

Conference Series Biopolymers and Bioplastics 2018 International Conference Keynote Speaker Tine Zlebnik photo
Biography:

Abstract:

Break: Panel Discussion 11:40-11:50
  • Polymer Material Science and Engineering | Biomaterials and Biopolymers | Polymer Science � The Next Generation
Speaker

Chair

Ebru Gunister

Khalifa University of Science and Technology, UAE

Session Introduction

Chao Yang

Fritz Industries, USA

Title: A novel relative permeability modifier polymer
Speaker
Biography:

Chao Yang has obtained his PhD degree in chemistry from Virginia Tech. He has been working in stimulation and production chemicals since 2013.

Abstract:

A new relative permeability modifier (RPM) has been developed for sandstone formations that are capable of reducing the permeability to water without impairing the permeability to oil.  The new polymer has the capacity to anchor to the formation, allowing it to endure production fluid flow. Laboratory data were obtained in core flow test using high permeability sandstone cores (1.5 to 2 Darcies air permeability Berea Sandstone) at 200o F. The core flow sequence followed was to measure the relative permeabilities of oil at irreducible water (2% KCl) saturation and to water (2% KCl) at irreducible oil saturation before the injection of the RPM polymer. Then, the RPM polymer solution was injected into the core in the opposite direction (injection direction). The system was shut-in for one hour to facilitate polymer anchoring and re-organization. The relative water saturation was then determined by injecting 2% KCl in the production direction, followed by the oil relative permeability. One last water permeability was measured with 2% KCl after the oil permeability to determine the ability of the polymer to anchor to the core. Results indicate that the polymer can remarkably reduce the permeability to water without significantly impairing the permeability to oil. The regain relative water permeability was less than 20% after the injection of RPM polymer; the subsequent regain relative oil permeability was more than 75% and the regain relative water permeability was less than 30% after the oil injection. Results also indicated the RPM polymer had similar performance regardless of the injection direction used. Moreover pre-flushing the core with mutual solvent and surfactants before the polymer treatment did not have a significant effect on the performance of polymer. The capacity to selectively modify the water permeability makes it feasible to use this RPM polymer as near wellbore or far field treatment to reduce the excessive water production. Moreover, the polymer can be applied without the use of a mutual solvent and surfactants.

Biography:

Chao Yang has obtained his PhD degree in chemistry from Virginia Tech. He has been working in stimulation and production chemicals since 2013.

Abstract:

A new relative permeability modifier (RPM) has been developed for sandstone formations that are capable of reducing the permeability to water without impairing the permeability to oil.  The new polymer has the capacity to anchor to the formation, allowing it to endure production fluid flow. Laboratory data were obtained in core flow test using high permeability sandstone cores (1.5 to 2 Darcies air permeability Berea Sandstone) at 200o F. The core flow sequence followed was to measure the relative permeabilities of oil at irreducible water (2% KCl) saturation and to water (2% KCl) at irreducible oil saturation before the injection of the RPM polymer. Then, the RPM polymer solution was injected into the core in the opposite direction (injection direction). The system was shut-in for one hour to facilitate polymer anchoring and re-organization. The relative water saturation was then determined by injecting 2% KCl in the production direction, followed by the oil relative permeability. One last water permeability was measured with 2% KCl after the oil permeability to determine the ability of the polymer to anchor to the core. Results indicate that the polymer can remarkably reduce the permeability to water without significantly impairing the permeability to oil. The regain relative water permeability was less than 20% after the injection of RPM polymer; the subsequent regain relative oil permeability was more than 75% and the regain relative water permeability was less than 30% after the oil injection. Results also indicated the RPM polymer had similar performance regardless of the injection direction used. Moreover pre-flushing the core with mutual solvent and surfactants before the polymer treatment did not have a significant effect on the performance of polymer. The capacity to selectively modify the water permeability makes it feasible to use this RPM polymer as near wellbore or far field treatment to reduce the excessive water production. Moreover, the polymer can be applied without the use of a mutual solvent and surfactants.

Speaker
Biography:

Andrej Holobar has completed his PhD at the Karl Franzens University Graz, Austria, on chemical optical sensors for bioprocesses and finished postdoctoral studies at the Biotechnical University in Ljubljana. He is the CEO for research and development in company ECHO Instruments he has founded in 1992. He leads several EU projects in the field sensors and measuring technologies in combination with robotic systems. He is also a chemical adviser in REACH and SEVESO Europe directive.

Abstract:

A certificate gives the producer of the product the right to mark it with an approved logo that is accompanied with the serial number of the certificate. In Europe, independent certificates for biodegradable plastics are issued by EU standards. Compostable plastics are a subset of biodegradable plastics that biodegrade within the conditions and timeframe of the composting process. Compostable is always biodegradable while the biodegradable material is not always compostable. European Standard EN 13432 is part of a whole series of standards prepared under a mandate from the EU to support the implementation of the Directive on Packaging and Packaging Waste (94/62/EC). One of the test methods for assessing biodegradability is ISO 14855 for determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions. With the use of respirometer, it is possible to have an accurate, fast and reliable test for biodegradable materials under aerobic composting conditions. A new type of automated analysis with the implementation of new sensor technology with intelligent software control helps users to have fast results with maximal data evaluation. The new respirometry systems can be used in government accreditation institutions, production of raw material and products as well as research faculties and institutes.

Break: Panel discussion Lunch Break 12:50-13:50 @ Foyer

Marcio Dias Lima

Nano-Science and Technology Center, USA

Title: Twisted polymeric fiber based actuators
Speaker
Biography:

Marcio Dias Lima is currently Chief Application Scientist at the Nano-Science and Technology Center, part of Lintec of America. Previously he worked as Research Scientist at Prof. Ray Baughman’s group at the Alan G MacDiarmid NanoTech Institute. He obtained his Dipl.-Ing. Degree in Materials Engineering from the Federal University of Rio Grande does Sul (Brazil) in 2001. At the beginning of 2005 to 2007 he became a member of Dr Roth research group at the Max Plank Institute of Solid State Research in Germany as visiting PhD candidate. Research interests include artificial muscles, synthesis of carbon nanotubes, development of hybrid carbon nanotubes yarns and sheets for energy conversion and storage, high strength composites and nanostructured transparent and conductive films. He has 50 refereed publications (4385 citations, H-index 31) and 6 issued patents.      

                                                                                                                              

Abstract:

It has been demonstrated that highly twisted polymeric fibers are also capable to generate impressive tensile actuation, providing large strokes and vastly exceeding the work and power capabilities of natural skeletal muscle. Contraction of over 50% and lifting capacity up to 270 pounds weight have achieved using a single coiled fiber. These actuators are also can operate as torsional motors: a thin fiber can rotate heavy rotors at up to 100,000 rpm for 1,000,000 cycles. Actuation can be driven by electrical signals or by relatively small variation in environmental temperature, which can be converted into mechanical work. That allows the use of these new actuators for automatic temperature and airflow control and natural light absorption or reflection in small and large structures such as residences and factory installations. Fig. 1 shows an example of environmental temperature control using only twisted polymeric fibers which are capable to open and close the roof a simulated greenhouse in order to regulate its internal temperature. Another field of applications is on soft-robotics: since these actuators are very flexible, capable to produce large tensile strength and easily assembled into arrays they are suitable for construction of soft manipulators

Namrata Tripathi

Illinois State University, USA

Title: Twisted polymeric fiber based actuators
Biography:

Namrata Tripathi is currently an Instructional Assistant Professor of Physics at Illinois State University, USA. She received her PhD from Indian Institute of Technology Kharagpur, India. Her research has been focusing on solid polymer electrolyte for energy storage devices such as batteries. Her research has provided important insight in structure-property relation in polymer-nanocomposite electrolytes and contributes to the value of future designs of advanced batteries. She serves as an editorial board member of International Journal of Electrical Components and Energy Conversion.

Abstract:

Increasing global warming triggered the urgent need for the reduction of greenhouse gas emission and pollution. It can be effectively achieved by replacing conventional combustion-engine vehicles with sustainable electric or hybrid vehicles. But the success of electric vehicle is facing challenges associated with lithium-ion batteries such as low energy efficiency, high cost, and risk of fire. To make electric, hybrid vehicles more attractive to consumers, the batteries that power those cars need to be affordable, high performing, long lasting, safe, and operate at maximum efficiency in a wide range of driving conditions and climates. In this regard, solid polymer electrolytes could be a real game-changer creating a perfect battery for an electric vehicle, solving most of the issues like battery lifetime, safety, and cost. However poor ionic conductivity of solid polymer electrolyte limits their practical applications. Technological applications of this class of materials require high ionic conductivity. To enhance the ionic conductivity to the required level and beyond, several new approaches have been adopted. To achieve the required conductivity and to suggest ways for improvement, the conduction mechanism and transport properties of such materials need to be better understood. The conductivity of PNC is mostly a function of the number of charge carriers and their mobility. Hence, to understand the conduction mechanism, it is most important to determine number density and mobility of charge carriers quantitatively. A number of techniques have been used, including nuclear magnetic resonance, transient ionic direct current measurement, dielectric analysis, and electrochemical impedance spectroscopy (EIS) method. I will discuss dielectric analysis and EIS method in detail to understand ion conduction mechanism in polymer nanocomposite.

 

Break: Panel Discussion 14:50-15:00 Young Research Forum
Speaker
Biography:

Balázs Pásztói started his PhD in 2015 at the Eötvös Loránd University in Budapest, Hungary. He currently works as a research assistant at the Polymer Chemistry Research Group of RCNS HAS. His research topic involves mainly the synthesis of functional polyisobutylenes and the investigation of the thermoresponsive behavior of polyoxazolines.

Abstract:

Poly(2-alkyl-2-oxazoline)s belong to a synthetic class of unique polyamides with pendant amide groups. These polymers can be prepared by quasi-living cationic ring-opening polymerization (CROP) of 2-alkyl-2-oxazoline monomers. This highlighted group of macromolecules is of great interest for biomedical applications due to their biocompatibility and biodegradability. Poly(2-ethyl-2-oxazoline)s (PEtOx) possesses thermoresponsive behavior and critical solution temperature (CST) in water. This phenomenon can be tuned by the structure of the polymer by either with the variation of the 2-substituent or applying end-group modifications. For accurate control of the hydrophilic-hydrophobic balance of the macromolecule, quasi-living CROP of 2-alkyl-2-oxazolines gives an excellent opportunity with the broad selection possibility of initiators and terminating (quenching) agents. In our work, thermoresponsive poly(2-ethyl-2-oxazoline)s were prepared by quasi-living CROP with different average molecular weights. Several initiators and terminating agents were used in order to result in monofunctional and bifunctional, hydrophobically modified, amphiphilic type macromolecules. The hydrophilic-hydrophobic balance of these polyoxazolines can be controlled by the choice of the initiator, terminating agent and the molecular weight. The thermoresponsive behavior of the synthesized products was comprehensively studied by turbidimetry in a wide concentration range. A strong influence on the CST values was determined as a function of the chain length and presence of alkyl end-groups.

Speaker
Biography:

Mayra Mendez-Encinas has completed her MSc at Research Center for Food and Development, CIAD, Mexico which included an academic stay at ERRC, ARS, USDA (Wyndmoor, PA, USA). She is studying a PhD at CIAD. Her research interest is focused on extraction and characterization of polysaccharides from renewable resources, particularly ferulated arabinoxylans, arabinoxylan gels and their potential application as an antioxidant and anticancer agent. She has published three book chapters and has attended two International Conferences, the 2017 MRS Spring Meeting & Exhibit (Phoenix, AZ, USA) and the 19th Gums & Stabilizers for the Food Industry Conference, 2017 (Berlin, Germany).

Abstract:

Interest in biopolymers has increased due to their numerous advantages for application in biomedical and pharmaceutical fields. Among biopolymers, polysaccharides represent an excellent alternative for the design of drug delivery systems. Arabinoxylans (AX) are non-starch polysaccharides from cereal grains. AX consists in a linear β-(1-4)-D-xylopyranosyl backbone to which α-L-arabinofuranosyl residues are attached on O-2 and/or O-3 positions. Some ferulic acid (FA) molecules are esterified to arabinoses on O-5. AX form covalent gels in presence of free radical-generating agents through the oxidative coupling of FA molecules, leading to the formation of dimers and trimer of FA and resulting in the gel network. AX gels exhibit stability to pH and temperature changes and high water absorption. These gels have been studied as matrices for the controlled release of biomolecules and cells, demonstrating its potential application in pharmaceutical, biomedical and food industries. AX has prebiotic, antioxidant and antiproliferative properties. AX gels can be fermented by the colonic microbiota and recent in vivo studies have demonstrated that administration of AX gels to obese rats increase bifidobacteria population and limit Bacteroides, suggesting a prebiotic effect. In addition, AX gels exhibit antioxidant activity in vitro. The antiproliferative activity of AX appears to be related to its antioxidant and prebiotic properties. In this regard, the study of the antiproliferative activity of AX gels and its relationship with their prebiotic and antioxidant properties should be considered. Thus, AX gels can be promising drug delivery systems presenting antioxidant and antiproliferative properties.

Speaker
Biography:

Ana M Morales-Burgos has completed her Master degree in Biotechnology at the University of Guadalajara and she is actually finishing her PhD studies in Biopolymers at the Research Center for Food and Development in Mexico. She has published 1 paper and 2 chapters in reputed editorials and her research studies are focused on the extraction and characterization of natural polymers and the development of biomaterials.

Abstract:

Arabinoxylans (AX) are biopolymers present mainly in cereal grains, they are fermentable by colonic bacteria and able to form covalent gels through the oxidation of ferulic acid molecules. These gels are low affected by pH changes and suitable for colon-targeted insulin administration. The aim of this work was to study arabinoxylans properties and to produce and analyze AX-insulin microspheres. AX obtained from maize bran presented high ferulic acid content (22.4±0.9g/mg) and an arabinose to xylose ratio of 0.6. The antioxidant activity of AX was studied by ABTS and DPPH assays obtaining the IC50 values of 1050.9±24.6 and 681.1±41.2g/ml, respectively. The gelation property of 1% (w/v) AX solutions was analyzed by rheology using laccase. Gels with a storage modulus of 530 Pa and a mechanical spectrum characteristic of a solid-like material were obtained. A triaxial electrospray system was used to prepare AX-insulin microspheres with a mean diameter of 240m and a uniform insulin distribution as observed by confocal laser scanning microscopy. During the in vitro analysis under simulated gastrointestinal conditions, 20±0.5% of encapsulated insulin was released. Finally, the in vivo analysis performed in Wistar rats presenting type I diabetes induced by streptozotocin showed a hypoglycemic effect from 16 to 18h after AX-insulin microspheres oral administration. The results suggest AX microspheres as an attractive colon-targeted drug delivery system. Further studies are needed to investigate the insulin stability in the AX microspheres during storage.